Регистрация
Комплексные поставки электронных компонентов

Выбор силовых дросселей


В статье рассматриваются основные принципы выбора силовых дросселей для DC/DC-преобразователей на примере компонентов TDK Electronics.

Силовые дроссели являются важными компонентами DC/DC-преобразователей - они сглаживают напряжение и влияют на динамические свойства преобразователей. Неправильный выбор дросселя способен перечеркнуть достоинства DC/DC-преобразователя, а порой спровоцировать длительный колебательный переходный процесс и привести к серьезным сбоям в работе системы питания. Необходимо корректно выбрать дроссель в системе, в которой нагрузка скачкообразно меняется в широких пределах.

Разработчики должны руководствоваться шестью ключевыми принципами, которые позволяют использовать и выбирать силовые дроссели так, чтобы они соответствовали требованиям проектируемой системы и характеристикам DC/DC-преобразователей. К этим требованиям относятся:

  • учет влияния силовых дросселей на работоспособность DC/DC-преобразователя;
  • характеристики силового дросселя;
  • потери в дросселях;
  • значения индуктивности;
  • поток рассеяния и акустический шум;
  • характеристики DC/DC-преобразователей.

В таблице 1 перечислены требуемые характеристики DC/DC-преобразователей и соответствующие характеристики силовых дросселей, которые мы обсудим в этой статье.

Таблица 1. Требуемые характеристики DC/DC-преобразователей и соответствующие характеристики силовых дросселей

Требуемые характеристики от DC/DC-преобразователей Технологии и меры улучшения характеристик силовых дросселей
высокая эффективность дроссели с малыми потерями в меди и сердечниках
малые размеры и низкий профиль применение многослойной и тонкопленочной технологий, металлических композитов и т.д.
большой ток применение специальных сердечников, проводов с прямоугольным сечением и т.д.
высокая стабильность выходного напряжения улучшенные характеристики дросселя при смещении постоянным напряжением, улучшенные тепловые характеристики и т.д.
уменьшение пульсаций выходного напряжения оптимизация значений индуктивности, тока пульсаций и т.д.
устойчивость к пиковым токам выбор соответствующих параметров пикового тока, связь с цепями защиты от сверхтоков, мягкое насыщение за счет выбора материала сердечников и т.д.
уменьшение индуктивности рассеяния уменьшение потока рассеяния, меры против появления прерывистого режима и т.д.
отсутствие акустического шума конструкции для подавления вибраций, применение многослойных, тонкопленочных и металлических композитов

ВЛИЯНИЕ СИЛОВЫХ ДРОССЕЛЕЙ НА ЭФФЕКТИВНОСТЬ DC/DC-ПРЕОБРАЗОВАТЕЛЯ

Являясь крайне важными компонентами, влияющими на работу DC/DC-преобразователя, силовые дроссели представляют собой катушки, которые передают постоянный ток, сглаживая его броски. Благодаря явлению самоиндукции силовые дроссели создают электродвижущую силу, которая препятствует колебаниям и сглаживает их при изменении тока. При протекании переменного тока дроссель противодействует распространению колебаний на высоких частотах.

Рис. 1. Принципиальная схема понижающего DC/DC-преобразователя (диодно-выпрямительного типа)

Силовые дроссели накапливают энергию при прохождении через них электрического тока, когда силовой ключ преобразователя подключает их к сети, а затем отдают энергию в нагрузку при отключении от сети. Благодаря этой характеристике силовые дроссели чаще всего используются в цепях питания и DC/DC-преобразователях, в значительной мере влияя на эффективность этих устройств. На рисунке 1 представлена принципиальная схема понижающего DC/DC-преобразователя. Когда ключ замкнут, силовой дроссель накапливает энергию, а когда разомкнут, энергия разряжается, и проходит ток. Напряжение можно уменьшить до требуемой величины с помощью коэффициента заполнения D (отношения времени включения ко времени коммутационного цикла) в соответствии с уравнением:

VOUT = VIN * D

ХАРАКТЕРИСТИКИ СИЛОВОГО ДРОССЕЛЯ

Существуют сложные компромиссы, которые следует понимать в отношении параметров силовых дросселей и способов их использования. На эти компромиссы приходится идти из-за особенностей характеристик силовых дросселей и их применения. К ним, например, могут относиться такие параметры как температура и величина тока.

Как известно, индуктивность силовых дросселей уменьшается по мере насыщения сердечника, т. е. с возрастанием тока. Если дроссель имеет смещение постоянной составляющей, этот эффект проявляется заметнее. Повышение температуры в результате увеличения тока вызывает изменение магнитной проницаемости сердечника дросселя и магнитной индукции насыщения.

На шумовые характеристики также влияет структура магнитного экрана. Сопротивление постоянному току может меняться при той же индуктивности в зависимости от толщины и количества обмоток, что оказывает влияние на то, как выделяется тепло.

Силовые дроссели по способу выполнении обмотки обычно делятся на проволочные, тонкопленочные и многослойные в соответствии с их конструктивными особенностями и различиями в производственных технологиях. Производители часто используют магниты, ферриты или другие металлы с магнитными свойствами в качестве сердечников силовых дросселей. Ферритовые сердечники обладают высокой индуктивностью и большой магнитной проницаемостью, а металлические магнитные сердечники - исключительной высокой индукцией насыщения. Это свойство делает их идеальными для использования в приложениях с большими токами.

Кроме того, ток силовых дросселей ограничивается следующими пороговыми значениями: допустимым током смещения, который ограничивает насыщение сердечника, и допустимым током для повышения температуры. Индуктивность сердечника силового дросселя падает, когда сердечник становится магнитонасыщенным.

Максимальный рекомендуемый ток, протекание которого не приводит к магнитному насыщению, это, по сути, ток смещения. Ток, который определяется тепловыделением на электрическом сопротивлении в обмотках дросселя, является допустимым для повышения температуры. Номинальный ток дросселя не должен превышать этих допустимых токов двух типов. Например, допускается падение индуктивности на 40% от начального значения и повышение температуры на 40°С из-за тепловыделения.

Поскольку каждый из этих параметров является взаимозависимым и неоднозначным, каждый силовой дроссель уникален для разных приложений. следовательно, правильный выбор дросселя в каждом случае имеет решающее значение для успешного проектирования. Помимо области применения, при выборе наиболее подходящих силовых дросселей следует учитывать размер, стоимость и эффективность DC/DC-преобразования.

ПОТЕРИ В ДРОССЕЛЯХ

Поскольку потери происходят в каждом силовом дросселе, необходимо понимать их виды. Потери могут вызвать повышение температуры. Потери в меди возникают в проводах обмотки, а потери в стали обусловлены материалами сердечника. И те, и другие потери могут привести к повышению температуры. Обстоятельства, которые приводят к потерям, в значительной степени зависят от размера и рабочей частоты нагрузок на силовом дросселе.

Потери в меди часто являются результатом сопротивления обмоток постоянному току RDC и увеличиваются пропорционально квадрату тока. Потери в меди при прохождении переменного тока часто наиболее ощутимы в высокочастотных диапазонах. Нередко с увеличением частоты переменного тока возрастает величина эффективного сопротивления в результате т. н. поверхностного эффекта. Кроме того, ток может сосредотачиваться вокруг поверхности проводника.

Потери в стали растут пропорционально квадрату частоты и часто проявляются в виде потерь от вихревых токов и гистерезисных потерь. В ВЧ-диапазоне потери в сердечнике, вызванные потерями от вихревых токов, становятся больше, чем в НЧ-диапазоне. Эффективность сердечника можно повысить, выбрав дроссель, у которого малые потери в сердечнике в ВЧ-диапазоне.

Потери в силовом дросселе также меняются в зависимости от размера нагрузки. При средних и высоких нагрузках потери в меди являются доминирующими, а потери в стали преобладают при легких нагрузках. Постоянный ток смещения велик, когда токи через дроссель принимают умеренные или высокие значения из-за сопротивления постоянному току.

При небольшой нагрузке ток DC-смещения уменьшается так, что потери в меди минимальны. Поскольку, однако, даже в режиме ожидания осуществляется коммутация при постоянной частоте, потери в стали становятся преобладающими, а эффективность снижается. Чтобы уменьшить потери в стали, можно уменьшить величину магнитного потока.

На рисунке 2 иллюстрируются факторы, влияющие на потери в силовых дросселях.

Рис. 2. Виды потерь силового дросселя

ЗНАЧЕНИЯ ИНДУКТИВНОСТИ

При выборе силового дросселя следует определить ток пульсаций и другие значения индуктивности. Например, при выборе силовых катушек индуктивности для понижающих DC/DC-преобразователей учитывается ток пульсаций тока в виде непрерывных сигналов треугольной формы при переключении соответствующих элементов (см. рис. 3). Таким образом, их использование в прерывистом режиме влияет на стабильность источника питания.

Рис. 3. Непрерывный и прерывистый режимы

В непрерывном режиме ток катушки индуктивности не прерывается. так происходит, когда пульсирующий ток накладывается на постоянный ток смещения. однако в Dc/Dc-преобразователях с выпрямительными диодами могут возникать интервалы времени, когда при небольшой нагрузке ток катушки индуктивности становится нулевым. таким образом, ток дросселя периодически прерывается. Это состояние называется прерывистым режимом (см. рис. 3). он не только влияет на стабильность источника питания, но и становится причиной появления акустического шума и звона в импульсном сигнале напряжения при коммутации, если дроссель работает в прерывистом режиме. В результате шум значительно усиливается.

Значение индуктивности связано с напряжением, приложенным к дросселю, и током пульсаций. следовательно, Dc/Dc-преобразователи с диодным выпрямлением следует выбирать на основе того, как они ограничивают ток пульсаций, и избегать проблем, связанных с работой в прерывистом режиме.

При этом разработчикам приходится выбирать между током пульсаций и величиной индуктивности. Если в приложении следует уменьшить ток пульсаций, потребуется большая индуктивность, что может увеличить стоимость и размер системы, а также характеристики переходного режима. с другой стороны, ток пульсаций возрастет, если силовой дроссель выбран исходя из небольшой индуктивности в силу своего размера или стоимости.

Рекомендуется определять параметры силовых дросселей так, чтобы при заданной индуктивности величина пульсирующего тока составляла 20-30% от номинального тока. Кроме того, напряжение пульсаций можно в еще большей мере уменьшить за счет использования выходного сглаживающего конденсатора с малым эквивалентным последовательным сопротивлением (ESR).

Если нагрузка внезапно возрастет, выходное напряжение уменьшится. После этого силовой дроссель позволяет очень большому пиковому току восстановить заряд выходного конденсатора в течение короткого интервала времени. Однако если допустимая пульсация тока мала, характеристика переходного процесса, необходимая для восстановления заряда после спада напряжения, может оказаться недостаточно подходящей.

Спад напряжения можно предотвратить, увеличив емкость сглаживающего конденсатора. Однако это приведет к увеличению времени его заряда. Чтобы решить эту проблему, можно уменьшить величину индуктивности, увеличив, таким образом, ток пульсаций. Однако при этом уменьшится и накапливаемая в дросселе энергия; следовательно, выходное напряжение может уменьшиться. Ток дросселя индуктивности станет больше, что ускорит восстановление заряда конденсатора. В этом методе необходимо использовать регулировку при понижении индуктивности с учетом общего баланса системы.

Схемы защиты от перегрузки по току в ИС источников питания и управляющих цепях часто имеют очень разные пороговые значения и методы обнаружения. При выборе силовых дросселей следует также учитывать эти защитные схемы. Как показывает практика, пиковое значение тока силового дросселя необходимо установить в диапазоне 110-130% от заданного значения максимального тока. В случаях, когда возникает чрезмерный пиковый ток, рекомендуется использовать дроссель с мягким насыщением сердечника, у которого магнитное насыщение происходит постепенно, чтобы уменьшить резкие изменения индуктивности.

Рис. 4. Характеристики смещения по постоянному току в случаях использования ферритовых и металлических сердечников

Таблица 2. Основные типы силовых дросселей от TDK Electronics

Тип Проволочные дроссели Многослойные дроссели Тонкопленочные дроссели для источников питания
Изделие феррит

металл

феррит

металл

металл

Серия NLCV VLS-CX VLS-EX CLF SLF LTF VLB VLBU VLBS VLS-HBX SPM MLP MLD MLS (разрабатыва ется) TFM
Экран нет полимер с добавлением магнитной крошки полимер с добавлением магнитной крошки есть есть полимер с добавлением магнитной крошки есть есть есть есть
Размер малый малый средний средний -большой средний малый средний -большой тонкого типа, малый малый малый
Особенности прессованная пластмасса малое Rdc широкий диапазон L широкий диапазон L, 150°С малая L, большие токи большие токи большие токи высокая добротность большие токи, высокая эффективность большие токи, высокая эффективность, 150°С

На рисунке 4 сравниваются характеристики смещения по постоянному току в случаях использования ферритовых и металлических сердечников. У ферритовых сердечников индуктивность в малой степени зависит от нагрузочного тока до этапа магнитного насыщения. как только оно достигается, ток резко уменьшается. Зависимость индуктивности металлического сердечника от тока немного больше, чем у ферритового сердечника, но она спадает плавно. таким образом, у металлического сердечника - отличная характеристика для приложений с большими пиковыми токами.

МАГНИТНЫЙ ПОТОК РАССЕЯНИЯ И АКУСТИЧЕСКИЙ ШУМ

Если частота переключения катушки индуктивности не превышает 20 кГц, в сердечнике могут возникать вибрации из-за магнитострикционных эффектов, сопровождающиеся акустическим шумом.

Этот шум может появиться и как результат чрезмерных колебаний нагрузочного тока. Магнитный поток рассеяния от силовых дросселей влияет на соседние компоненты, а также вызывает акустический шум. Магнитные экраны силовых дросселей позволяют уменьшить поток рассеяния. Переключение из режима широтно-импульсной модуляции (ШИМ) в режим частотноимпульсной модуляции (ЧИМ) позволяет контролировать частоту и поддерживать постоянную ширину импульса в условиях небольшой нагрузки. Это один из методов, повышающих эффективность силовых дросселей для DC/DC-преобразователей.

Известны и другие способы решения проблем, связанных с характеристиками силового дросселя - необходимо лишь обеспечить эффективное взаимодействие с производителем или высококвалифицированным дистрибьютором. Поступая таким образом, разработчики получают возможность определить наиболее подходящий силовой дроссель для приложения и улучшить характеристики DC/DC-преобразователей.

Компания TDK Electronics предлагает широкий выбор силовых дросселей с разными характеристиками. В таблице 2 представлены силовые дроссели основных типов.

Опубликовано в журнале "Электронные Компоненты" №5, 2021 г.


Производители

Документация

раскрыть все
Вернуться в раздел